Product Description

ELSS Collection

A blend solution which is straightforward to operate. Every single model has a cross-roller bearing that with high rigidity to assist external masses.

ELSN Sequence

A light-weight bodyweight item. Compare with normal product that with the identical performance, LSN sequence is 30% lighter.

ELSG Collection

Substantial torque. Compare with common goods, LSG series’ torque potential is 30% higher. And the service daily life is enhanced by 43%, with high load capability and large reliablity.
 

CONTAST US

 

LSS/LSN Rated parameters

Model Reduction ratio Rated torque at 2000r/min enter Permissible CZPT torque at begin and cease Permissible optimum value for regular load torque Permissible greatest momentary torque Permissible maximum inputrotational velocity Permissible average enter rotational velocity Backlash Design existence
Grease Grease
Nm kgfm Nm kgfm Nm kgfm Nm kgfm r/min r/min Arc Sec Hour
11 eighty 3.8 .4 eight.5 .nine 6.8 .7 19.1 1.9 8000 3000 ≤30 10000
100 four.1 .4 8.9 .nine seven.2 .7 20 two
14 fifty 6.two .6 20.7 two.one 7.9 .seven forty.three 4.1 7000 3000 ≤30 15000
80 nine .9 27 2.7 12.7 one.3 54.1 5.5
one hundred 9 .nine 32 3.three twelve.7 1.3 62.1 6.three
17 fifty 18.4 1.nine 39 four 29.nine 3 eighty.five 8.2 6500 3000 ≤30 15000
eighty twenty five.three two.6 forty nine.5 five 31 3. two one hundred.1 ten.2
one hundred 27.six 2.8 62 6.three 45 4.six 124.two 12.seven
20 50 28.8 two.nine 64.four six.six 39 4 112.7 eleven.five 5600 3000 ≤30 15000
80 39.1 four 85 eight.eight 54 5.5 146.one 14.nine
100 46 four.seven ninety four.three nine.six 56 5.8 169.1 17. 2
a hundred and twenty 46 4.seven one hundred ten.2 fifty six five.eight 169.1 seventeen.two
a hundred and sixty forty six 4.7 112 10.9 fifty six five.8 169.1 seventeen. two
25 50 44.9 4.six 113 eleven.5 sixty three 6. 5 213.nine 21.8 4800 3000 ≤30 15000
80 72.five 7.4 158 sixteen.1 100 10.two 293.3 29.9
a hundred seventy seven.1 7.nine 181 18.4 124 12. 7 326.six 33.three
120 seventy seven.one 7.nine 192 19.six 124 12.7 349.six 35.six
32 fifty 87.4 8.9 248 25.3 124 twelve.7 439 44.8 4000 3000 ≤30 15000
80 135.7 13.8 350 35.6 192 19.six 653 66.6
a hundred 157.6 sixteen.one 383 39.one 248 twenty five.3 744 75.nine
one hundred twenty 157.6 sixteen.1 406 41.four 248 25.3 789 eighty.five

 

LSG Rated parameters

 

Model Reduction ratio

Rated torque    at 2000r/min input

Permissible    peak torque at commence and quit Permissible    maximum benefit for common load torque Permissible    maximum momentary torque Permissible    maximum enter rotational velocity Permissible    average enter rotational speed Backlash Design daily life
Grease Grease
Nm kgfm Nm kgfm Nm kgfm Nm kgfm r/min r/min Arc    Sec Hour
11 eighty three.eight .four eight.five .9 six.eight .7 19.one 1.9 8000 3000 <=20 10000
a hundred 4.1 .4 eight.nine .9 seven.two .seven 20 2
14 50 seven .7 23 2.three 9 .nine forty six 4.seven 10000 6500 <=20 15000
80 ten 1 thirty three.1 fourteen 1.four 61 six.two
100 10 1 36 three.seven 14 one.four 70 seven.2
17 50 21 two.one 44 four.five 34 three.4 ninety one 9 7500 5600 <=20 20000
80 29 2.nine fifty six 5.seven 35 3.six 113 12
a hundred 31 3.2 70 seven.2 fifty one 5.2 143 15
20 50 33 three.3 seventy three 7.4 forty four 4.five 127 13 7000 4800 <=20 20000
eighty forty four 4.5 96 9.eight 61 six.2 165 17
a hundred fifty two 5.3 107 10.nine sixty four six.five 191 twenty
one hundred twenty 52 five.three 113 11.five sixty four 6.5 191 twenty
one hundred sixty 52 five.3 a hundred and twenty 12.2 sixty four six.5 191 twenty
25 50 fifty one five.2 127 thirteen seventy two seven.three 242 twenty five 5600 4000 <=20 20000
eighty 82 8.four 178 eighteen 113 12 332 34
one hundred 87 8.9 204 21 140 14 369 38
a hundred and twenty 87 8.nine 217 22 140 fourteen 395 40
32 50 ninety nine 10 281 29 140 14 497 fifty one 5600 3000 <=20 20000
80 153 16 395 forty 217 22 738 seventy five
a hundred 178 eighteen 433 44 281 29 841 86
120 178 18 459 47 281 29 892 91

 

Application: OEM
Transport Package: DHL
Specification: 160*160*160
Trademark: OEM
Origin: China

###

CONTAST US

###

Model Reduction ratio Rated torque at 2000r/min input Permissible peak torque at start and stop Permissible maximum value for average load torque Permissible maximum momentary torque Permissible maximum inputrotational speed Permissible average input rotational speed Backlash Design life
Grease Grease
Nm kgfm Nm kgfm Nm kgfm Nm kgfm r/min r/min Arc Sec Hour
11 80 3.8 0.4 8.5 0.9 6.8 0.7 19.1 1.9 8000 3000 ≤30 10000
100 4.1 0.4 8.9 0.9 7.2 0.7 20 2
14 50 6.2 0.6 20.7 2.1 7.9 0.7 40.3 4.1 7000 3000 ≤30 15000
80 9 0.9 27 2.7 12.7 1.3 54.1 5.5
100 9 0.9 32 3.3 12.7 1.3 62.1 6.3
17 50 18.4 1.9 39 4 29.9 3 80.5 8.2 6500 3000 ≤30 15000
80 25.3 2.6 49.5 5 31 3. 2 100.1 10.2
100 27.6 2.8 62 6.3 45 4.6 124.2 12.7
20 50 28.8 2.9 64.4 6.6 39 4 112.7 11.5 5600 3000 ≤30 15000
80 39.1 4 85 8.8 54 5.5 146.1 14.9
100 46 4.7 94.3 9.6 56 5.8 169.1 17. 2
120 46 4.7 100 10.2 56 5.8 169.1 17.2
160 46 4.7 112 10.9 56 5.8 169.1 17. 2
25 50 44.9 4.6 113 11.5 63 6. 5 213.9 21.8 4800 3000 ≤30 15000
80 72.5 7.4 158 16.1 100 10.2 293.3 29.9
100 77.1 7.9 181 18.4 124 12. 7 326.6 33.3
120 77.1 7.9 192 19.6 124 12.7 349.6 35.6
32 50 87.4 8.9 248 25.3 124 12.7 439 44.8 4000 3000 ≤30 15000
80 135.7 13.8 350 35.6 192 19.6 653 66.6
100 157.6 16.1 383 39.1 248 25.3 744 75.9
120 157.6 16.1 406 41.4 248 25.3 789 80.5

###

Model Reduction ratio

Rated torque    at 2000r/min input

Permissible    peak torque at start and stop Permissible    maximum value for average load torque Permissible    maximum momentary torque Permissible    maximum input rotational speed Permissible    average input rotational speed Backlash Design life
Grease Grease
Nm kgfm Nm kgfm Nm kgfm Nm kgfm r/min r/min Arc    Sec Hour
11 80 3.8 0.4 8.5 0.9 6.8 0.7 19.1 1.9 8000 3000 <=20 10000
100 4.1 0.4 8.9 0.9 7.2 0.7 20 2
14 50 7 0.7 23 2.3 9 0.9 46 4.7 10000 6500 <=20 15000
80 10 1 30 3.1 14 1.4 61 6.2
100 10 1 36 3.7 14 1.4 70 7.2
17 50 21 2.1 44 4.5 34 3.4 91 9 7500 5600 <=20 20000
80 29 2.9 56 5.7 35 3.6 113 12
100 31 3.2 70 7.2 51 5.2 143 15
20 50 33 3.3 73 7.4 44 4.5 127 13 7000 4800 <=20 20000
80 44 4.5 96 9.8 61 6.2 165 17
100 52 5.3 107 10.9 64 6.5 191 20
120 52 5.3 113 11.5 64 6.5 191 20
160 52 5.3 120 12.2 64 6.5 191 20
25 50 51 5.2 127 13 72 7.3 242 25 5600 4000 <=20 20000
80 82 8.4 178 18 113 12 332 34
100 87 8.9 204 21 140 14 369 38
120 87 8.9 217 22 140 14 395 40
32 50 99 10 281 29 140 14 497 51 5600 3000 <=20 20000
80 153 16 395 40 217 22 738 75
100 178 18 433 44 281 29 841 86
120 178 18 459 47 281 29 892 91
Application: OEM
Transport Package: DHL
Specification: 160*160*160
Trademark: OEM
Origin: China

###

CONTAST US

###

Model Reduction ratio Rated torque at 2000r/min input Permissible peak torque at start and stop Permissible maximum value for average load torque Permissible maximum momentary torque Permissible maximum inputrotational speed Permissible average input rotational speed Backlash Design life
Grease Grease
Nm kgfm Nm kgfm Nm kgfm Nm kgfm r/min r/min Arc Sec Hour
11 80 3.8 0.4 8.5 0.9 6.8 0.7 19.1 1.9 8000 3000 ≤30 10000
100 4.1 0.4 8.9 0.9 7.2 0.7 20 2
14 50 6.2 0.6 20.7 2.1 7.9 0.7 40.3 4.1 7000 3000 ≤30 15000
80 9 0.9 27 2.7 12.7 1.3 54.1 5.5
100 9 0.9 32 3.3 12.7 1.3 62.1 6.3
17 50 18.4 1.9 39 4 29.9 3 80.5 8.2 6500 3000 ≤30 15000
80 25.3 2.6 49.5 5 31 3. 2 100.1 10.2
100 27.6 2.8 62 6.3 45 4.6 124.2 12.7
20 50 28.8 2.9 64.4 6.6 39 4 112.7 11.5 5600 3000 ≤30 15000
80 39.1 4 85 8.8 54 5.5 146.1 14.9
100 46 4.7 94.3 9.6 56 5.8 169.1 17. 2
120 46 4.7 100 10.2 56 5.8 169.1 17.2
160 46 4.7 112 10.9 56 5.8 169.1 17. 2
25 50 44.9 4.6 113 11.5 63 6. 5 213.9 21.8 4800 3000 ≤30 15000
80 72.5 7.4 158 16.1 100 10.2 293.3 29.9
100 77.1 7.9 181 18.4 124 12. 7 326.6 33.3
120 77.1 7.9 192 19.6 124 12.7 349.6 35.6
32 50 87.4 8.9 248 25.3 124 12.7 439 44.8 4000 3000 ≤30 15000
80 135.7 13.8 350 35.6 192 19.6 653 66.6
100 157.6 16.1 383 39.1 248 25.3 744 75.9
120 157.6 16.1 406 41.4 248 25.3 789 80.5

###

Model Reduction ratio

Rated torque    at 2000r/min input

Permissible    peak torque at start and stop Permissible    maximum value for average load torque Permissible    maximum momentary torque Permissible    maximum input rotational speed Permissible    average input rotational speed Backlash Design life
Grease Grease
Nm kgfm Nm kgfm Nm kgfm Nm kgfm r/min r/min Arc    Sec Hour
11 80 3.8 0.4 8.5 0.9 6.8 0.7 19.1 1.9 8000 3000 <=20 10000
100 4.1 0.4 8.9 0.9 7.2 0.7 20 2
14 50 7 0.7 23 2.3 9 0.9 46 4.7 10000 6500 <=20 15000
80 10 1 30 3.1 14 1.4 61 6.2
100 10 1 36 3.7 14 1.4 70 7.2
17 50 21 2.1 44 4.5 34 3.4 91 9 7500 5600 <=20 20000
80 29 2.9 56 5.7 35 3.6 113 12
100 31 3.2 70 7.2 51 5.2 143 15
20 50 33 3.3 73 7.4 44 4.5 127 13 7000 4800 <=20 20000
80 44 4.5 96 9.8 61 6.2 165 17
100 52 5.3 107 10.9 64 6.5 191 20
120 52 5.3 113 11.5 64 6.5 191 20
160 52 5.3 120 12.2 64 6.5 191 20
25 50 51 5.2 127 13 72 7.3 242 25 5600 4000 <=20 20000
80 82 8.4 178 18 113 12 332 34
100 87 8.9 204 21 140 14 369 38
120 87 8.9 217 22 140 14 395 40
32 50 99 10 281 29 140 14 497 51 5600 3000 <=20 20000
80 153 16 395 40 217 22 738 75
100 178 18 433 44 281 29 841 86
120 178 18 459 47 281 29 892 91

Materials Used in Bearings

If you’re not familiar with the types of bearings, you may be interested in knowing more about the materials used to manufacture them. Here’s a look at what each type of bearing is made of, how it’s used, and how much they cost. To find the right bearing for your application, it’s important to choose a quality lubricant. The materials used in bearings are determined by their type and applications. Choosing the right lubricant will extend its life, and protect your machine’s parts from damage and premature wear.

Materials used in bearings

Bearings are made from a variety of materials. Stainless steel is a common material used for the components of bearings. It has a higher content of chromium and nickel. When exposed to oxygen, chromium reacts with it to form chromium oxide, which provides a passive film. For higher temperatures, teflon and Viton are also used. These materials offer excellent corrosion resistance and are often preferred by manufacturers for their unique properties.
Stainless steel is another material used in bearings. AISI 440C is a high-carbon stainless steel commonly used in rolling-contact bearings. It is widely used in corrosive environments, especially in applications where corrosion resistance is more important than load capacity. It can also be heat-treated and hardened to 60 HRC, but has lower fatigue life than SAE 52100. Stainless steel bearings may carry a 20-40% price premium, but their superior performance is worth the extra money.
Graphite and molybdenum disulfide are two of the most common materials used in bearings. While graphite is a popular material in bearings, it has very poor corrosion resistance and is unsuitable for applications where oil or grease is required. Graphite-based composite materials are another option. They combine the benefits of both graphite and ceramic materials. A variety of proprietary materials have been developed for high-temperature use, such as graphite and MoS2.
Wood bearings have been around for centuries. The oldest ones used wood and Lignum Vitae. These materials were lightweight, but they were incredibly strong and durable. Wood bearings were also lubricated with animal fats. During the 1700s, iron bearings were a popular choice. In 1839, Isaac Babbitt invented an alloy containing hard metal crystals suspended in a softer metal. It is considered a metal matrix composite.

Applications of bearings

bearing
Bearings are used in many different industries and systems to help facilitate rotation. The metal surfaces in the bearings support the weight of the load, which drives the rotation of the unit. Not all loads apply the same amount of force to bearings, however. Thrust and radial loads act in distinctly different ways. To better understand the different uses of bearings, let’s examine the various types of bearings. These versatile devices are essential for many industries, from automobiles to ships and from construction to industrial processes.
Cylindrical roller bearings are designed to support heavy loads. Their cylindrical rolling element distributes the load over a larger area. They are not, however, suited to handling thrust loads. Needle bearings, on the other hand, use small diameter cylinders and can fit into tighter spaces. The advantages of these types of bearings are numerous, and many leading producers are now leveraging the Industrial Internet of Things (IIoT) to develop connected smart bearings.
As a power generation industry, bearings play an essential role. From turbines to compressors, from generators to pumps, bearings are essential components of equipment. In addition to bearings, these components help move the equipment, so they can work properly. Typically, these components use ball bearings, although some roller bearings are used as well. In addition to being efficient and durable, these types of bearings also tend to be built to meet stringent internal clearance requirements and cage design requirements.
In addition to bearings for linear motion, bearings can also bear the weight of a rotary part. Depending on the application, they can be designed to minimize friction between moving parts. By constraining relative motion, bearings are used to reduce friction within a given application. The best-designed bearings minimize friction in a given application. If you’re in the market for a new bearing, NRB Industrial Bearings Limited is an excellent source to begin your search.

Types of bearings

bearing
The type of bearings you choose will have a significant impact on the performance of your machinery. Using the right bearings can increase efficiency, accuracy, and service intervals, and even reduce the cost of purchasing and operating machinery. There are several different types of bearings to choose from, including ball bearings and flexure bearings. Some types use a fluid to lubricate their surfaces, while others do not.
Plain bearings are the most common type of bearing, and are used for a variety of applications. Their cylindrical design allows for a relatively smooth movement. Often made of copper or other copper alloy, they have low coefficients of friction and are commonly used in the construction industry. Some types of plain bearings are also available with a gudgeon pin, which connects a piston to a connecting rod in a diesel engine.
Magnetic bearings are the newest type of bearing. They use permanent magnets to create a magnetic field around the shaft without requiring any power. These are difficult to design, and are still in the early stages of development. Electromagnets, on the other hand, require no power but can perform very high-precision positioning. They can be extremely durable and have a long service life. They are also lightweight and easy to repair.
Another type of bearing is needle roller. These are made of thin, long, and slender cylinders that are used in a variety of applications. Their slender size is ideal for a space-constrained application, and their small profile allows them to fit in tight places. These types of bearings are often used in automotive applications, bar stools, and camera panning devices. They have several advantages over ball bearings, including the ability to handle heavy axial loads.

Cost of bearings

A wide range of factors affect the cost of aerospace bearings, including the bearing material and its volatility. Manufacturers typically use high-grade steel for aircraft bearings, which are highly affected by fluctuations in the steel price. Government policies also play a part in the variation in trade price. The implementation of COVID-19 has changed the market dynamics, creating an uncertain outlook for supply and demand of aerospace bearings. New trade norms and transportation restrictions are expected to hamper the growth of this industry.
Demand for aerospace bearings is largely driven by aircraft manufacturers. In North America, aircraft manufacturers must meet extremely high standards of weight, performance, and quality. They also must be lightweight and cost-effective. This has resulted in a rising cost of aerospace bearings. The market for aerospace bearings is expected to grow at the highest CAGR over the next few years, driven by increasing investments in defense and aerospace infrastructure across Asia-Pacific.
Hub assemblies are also expensive. A wheel hub will cost between $400 and $500 for one set of bearings. In addition to this, the speed sensor will be included. The average cost of wheel bearings is between $400 and $500 for one side, including labor. But this price range is much lower if the bearing is a replacement of an entire wheel assembly. It is still worth noting that wheel hub bearings can be purchased separately for a lower price.
Replacement of one or two wheel bearings will depend on the model and year of the vehicle. For a small car, one rear wheel bearing can cost between $190 and $225, whereas two front wheel hubs can cost upwards of $1,000. Labor and parts prices will vary by location, and labor costs may also be covered under some warranty plans. If you decide to have it done yourself, be sure to ask multiple shops for estimates.

Inspection of bearings

bearing
To maintain bearing performance and prevent accidents, periodic inspections are essential. In addition to ensuring reliability, these inspections improve productivity and efficiency. Regular maintenance includes disassembly inspection, replenishment of lubricant and monitoring operation status. Here are some common ways to perform the necessary inspections. Keep reading to learn how to maintain bearings. After disassembly, you must clean the components thoroughly. Ensure that the bearings are free of burrs, debris, and corrosion.
Ultrasound technology is an excellent tool for monitoring slow-speed bearings. Most ultrasound instruments offer wide-ranging sensitivity and frequency tuning. Ultrasound can also be used to monitor bearing sound. Ultra-slow bearings are usually large and greased with high-viscosity lubricant. Crackling sounds indicate deformity. You can also listen for abnormal noise by plugging a vibration analyzer into the machine. Once the machine shows abnormal noise, schedule additional inspections.
Ultrasonic inspection involves using an ultrasound transducer to measure the amplitude of sound from a bearing. It is effective in early warnings of bearing failure and prevents over-lubrication. Ultrasound inspection of bearings is a cost-effective solution for early diagnosis of bearing problems. In addition to being a reliable tool, ultrasonic testing is digital and easy to implement. The following are some of the advantages of ultrasonic bearing inspection.
Dynamic quality evaluation involves the use of a special fixture for measuring bearing deformations under low shaft speed and light radial load. The size of the fixture influences the value of the deformations. A fixture should be sized between the diameter of the sensor and the roller to ensure maximum precision. The outer deformation signal is more sensitive with a larger sensor diameter. A vibration-acceleration sensor is used for the contrast test.

 with high quality with high quality
editor by czh 2023-02-03